Reinforced concrete design I Subject: Analysis\& Design of Singly beam

Monthly Exam
Time: 1 hr and 15 min
Stage: 3rd

Typical Solutions

Note: use $\mathrm{fc}{ }^{`}=25 \mathrm{MPa}$ and $\mathrm{fy}=420 \mathrm{Mpa}$ for all questions
Provide enough drawings to illustrate your answer for steel reinforcement.

Q1 (50\%): check the adequacy of the beam shown below according to ACI requirement. $\mathrm{W}_{\mathrm{D}}=2.5 \mathrm{kN} / \mathrm{m}$ (including self-weight) and $\mathrm{W}_{\mathrm{L}}=2.5 \mathrm{kN} / \mathrm{m}$

Solution:

1. Calculate $\rho=\frac{A s}{b d}$

As $=3 \times \frac{\pi}{4} \times 16^{2}=603.2 \mathrm{~mm}^{2}$
$\mathrm{d}=600-40-10-\frac{16}{2}=542 \mathrm{~mm}$
$\rho=\frac{603.2}{300 \times 542}=3.7 \times 10^{-3}$
$\rho_{\max }=0.85 \beta_{1} \frac{f c^{\prime}}{f y} \frac{\epsilon u}{\epsilon u+0.004}=0.018$
$\rho<\rho_{\max }$ O.k
2. Calculate \varnothing
$\mathrm{a}=\frac{\mathrm{As} * \mathrm{fy}}{0.85 \mathrm{fc} * \mathrm{~b}}=\frac{603.2 * 420}{0.85 * 25 * 300}=39.74 \mathrm{~mm}$
$c=\frac{a}{\beta 1}=\frac{39.74}{0.85}=46.75 \mathrm{~mm}$
$\epsilon_{\mathrm{t}}=\frac{d t-c}{\mathrm{c}} \epsilon_{\mathrm{u}}=\frac{542-46.75}{46.75} \times 0.003=0.0317>0.005$
$\therefore \emptyset=0.9$
3. Calculate $\varnothing \mathrm{Mn}$
$\emptyset \mathrm{Mn}=\emptyset \operatorname{Asfy}\left(\mathrm{d}-\frac{a}{2}\right)=0.9 \times 603.2 \times 420 \times\left(542-\frac{39.74}{2}\right) \times 10^{-6}$ $\emptyset \mathrm{Mn}=119 \mathrm{kN} . \mathrm{m}$
4. Find Mu and compare it with $\emptyset \mathrm{Mn}$
$\mathrm{W}_{\mathrm{D}}=2.5 \mathrm{kN} / \mathrm{m}, \mathrm{W}_{\mathrm{L}}=2.5 \mathrm{kN} / \mathrm{m}$
$\mathrm{Wu}=1.2 \mathrm{~W}_{\mathrm{D}}+1.6 \mathrm{~W}_{\mathrm{L}}=1.2 \times 2.5+1.6 \times 2.5=7 \mathrm{kN} / \mathrm{m}$
$\mathrm{Mu}=\frac{w_{u} \times \ell^{2}}{2}=\frac{7 \times 4.8^{2}}{2}=80.64 \mathrm{kN} . \mathrm{m}<\emptyset \mathrm{Mn}$
The section is O.k

Madent Al-Elem University College
 College Of Engineering
 Civil Engineering Department

Reinforced concrete design I
Subject: Analysis\& Design of Singly beam

Monthly Exam
Time: 1 hr and 15 min
Stage: 3rd

Q2 (50\%): Design a simply supported rectangular reinforced concrete beam shown in Figure below.
Assume that the designer intends to use:

- $\mathrm{Mu}=350 \mathrm{kN} . \mathrm{m}$
- Use $\rho=0.5 \rho_{\text {max }}$ and $\frac{d}{b}=3$
- Rebar diameter 20 mm for longitudinal reinforcement.
- Rebar diameter 10 mm for stirrups.
- Two layers of reinforcement.

Solution:

1. Compute required factored applied moment Mu
$\mathrm{Mu}=350 \mathrm{kN} . \mathrm{m}$
2. $\mathrm{Mu}=\varnothing \mathrm{Mn}=\varnothing \rho \mathrm{f}_{\mathrm{y}} \mathrm{bd}^{2}\left(1-0.59 \frac{\rho \mathrm{fy}}{\mathrm{fc}}\right)$

As it was mentioned in question $\rho=0.5 \rho_{\max } \& \frac{\mathrm{~d}}{\mathrm{~b}}=3$

$$
\begin{aligned}
& \rho_{\max }=0.85 \times \beta_{1} \frac{f c^{\prime}}{f y} \frac{\epsilon u}{\epsilon u+0.004} \text { and } \epsilon_{\mathrm{u}}=0.003 \\
& \rho_{\max }=0.85 \times 0.85 \times \frac{25}{420} \frac{0.003}{0.003+0.004}=0.0184 \\
& \rho=0.5 \rho_{\max }=0.5 \times 0.0184=9.2 \times 10^{-3}
\end{aligned}
$$

3. Substitute both of selected ρ and ration of $\frac{d}{b}$ in the main equation:

$$
\begin{aligned}
& \mathrm{Mu}=\emptyset \mathrm{Mn}=\varnothing \rho \mathrm{f}_{\mathrm{y}} \mathrm{bd} \mathrm{~d}^{2}\left(1-0.59 \frac{\rho \mathrm{fy}}{\mathrm{fc}}\right) \\
& 350 \times 10^{6}=0.9 \times 9.2 \times 10^{-3} \times 420 \times \mathrm{bd}^{2}\left(1-0.59 \times \frac{9.2 \times 10^{-3} \times 420}{25}\right) \\
& 350 \times 10^{6}=3.16 \times \mathrm{bd}^{2} \\
& \mathrm{bd}^{2}=110.75 \times 10^{6} \mathrm{~mm}^{2} \\
& \text { As } \frac{\mathrm{d}}{\mathrm{~b}}=3 \mathrm{~d}=3 \mathrm{~b} \\
& \mathrm{~b}=230.87 \mathrm{~mm} \approx 250 \mathrm{~mm} \quad \therefore \mathrm{~d}=3 \times 250=750 \mathrm{~mm}
\end{aligned}
$$

4. Compute required steel area

$$
\mathrm{As}_{\text {required }}=\rho \times(b d)=9.2 \times 10^{-3} \times 250 \times 750=1725 \mathrm{~mm}^{2}
$$

5. Compute the required number of bars (n)

No. of bars $(\mathrm{n})=\frac{\mathrm{As}}{\text { Abar }}=\frac{1725}{\frac{\pi_{2}}{4} 20^{2}}=\frac{1725}{314}=5.49 \approx 6$
6. Check if rebars can in be put in single layer
$\mathrm{b}_{\text {required }}=2 \times$ cover $+2 \times$ stirrups diameter + No. of rebars \times bar diameter $+($ No. of rebars-1) \times spacing between rebars
$\mathrm{b}_{\text {required }}=2 \times 40+2 \times 10+3 \times 20+2 \times 25=210 \mathrm{~mm}$
$b_{\text {required }}=210<b_{\text {provided }}=250$ O.K
7. Compute the depth (h)
$\mathrm{h}_{\text {for two layer }}=750+40+10+12.5+20=832.5 \approx 835 \mathrm{~mm}$
Use $(250 \times 750) \mathrm{mm}$ with $6 \emptyset 20 \mathrm{~mm}$
8. Check the assumption of $\varnothing=0.9$

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{As} * \mathrm{fy}}{0.85 f \mathrm{c} * \mathrm{~b}}=\frac{1884.9 * 420}{0.85 * 25 * 250}=149 \mathrm{~mm} \\
& \mathrm{c}=\frac{a}{\beta 1}=\frac{149}{0.85}=175.32 \mathrm{~mm} \\
& \mathrm{dt}=835-40-10-10=775 \mathrm{~mm} \\
& \epsilon_{\mathrm{t}}=\frac{d t-c}{\mathrm{c}} \epsilon_{\mathrm{u}}=\frac{775-175.32}{175.32} \times 0.003=0.0102>0.005 \therefore \emptyset=0.9
\end{aligned}
$$

9. Draw final detailed section

